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AXISYMMETRIC WAVE TRANSFER FUNCTIONS
OF FLEXIBLE TUBES
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The input and transfer impedances of fluid-filled pipes are calculated by using a wave
approach. The pipe walls can have orthotropic elastic properties associated with braided
rubber hose. The input and transfer impedances of a water-filled plain rubber hose are
plotted for zero pressurization and positive and negative pressure. It is found that the
pressure for this case does not greatly affect the stiffness. Input and transfer impedances
are also plotted for a braided rubber hose which demonstrates the significant pressure
stiffening effects found in practice.
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1. INTRODUCTION

Elastomeric flexible tubes and bellows are used to control structure- and fluid-borne
vibrational waves in pipes, and also to resolve alignment difficulties in construction. These
elastomeric elements potentially provide an impedance mismatch, reflecting both fluid and
structural waves back towards the source. In practice, however, the application has not
been as successful as expected, because the stiffness or impedance of the element becomes
large with increasing static pressure and also increasing frequency.

It is thought that these unwanted stiffening effects may be related to the steel or fibre
braid within the elastomeric material. The braid is included to provide stiffening and
strength while still permitting axial and lateral motion. The increase of stiffness with
pressure may be on account of the tension within the braid causing waves to be controlled
by membrane forces rather than bending forces. The stiffening effect observed with
increasing frequency could well be a combination of the elastomer properties and increased
radial restraint due to wall inertia.

This theoretical study is intended to investigate these phenomena by considering the
general case of wave propagation in a fluid-filled, orthotropically stiffened and internally
pressurized shell. Only axisymmetric waves were considered, as these are probably most
significant, and a structure compliant enough to control these motions would imply
adequate compliance of other wave types: in particular, the flexural wave.

In reference [1], the appropriate wave equations were set up. This led to plots of
dispersion curves relating the wavenumbers of the four possible wave types to frequency.
In general, two propagating waves occurred; one, denoted s=1, was mainly in the fluid
but involved significant radial wall motion, while the other, denoted s=2, was mainly
axial motion of the shell with little radial movement. The other two wave types s=3 and
s=4 referred to bending waves which, below the ring frequency, were non-propagating
waves seen as a local disturbance around axial discontinuities such as the input boundary.
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These dispersion relationships are used here to derive the impedance matrix for a
fluid-filled tube. This matrix relates input fluid or structural motions to transmitted fluid
pressures or axial wall stresses. The matrix could be coupled to a representation of other
pipework to predict the overall attenuation of fluid- or structure-borne waves.

The impedance matrices of an elastomeric tube were calculated for zero internal
pressure, and then positive and negative pressure. The pressurization caused some
stiffening and softening changes.

A model [1], developed for the elastic moduli and Poisson ratio for wire-stiffened
elastomer, exhibited the high coupling expected between the axial and radial motions of
the tube wall. Impedance matrices for a pressurized braided tube were calculated which
demonstrated more dramatic stiffness increases with pressure than had been seen with the
unbraided tube in the earlier tests.

2. CALCULATION OF THE IMPEDANCE MATRIX FOR AN ELASTIC,
FLUID-FILLED PIPE

Consider a fluid-filled pipe of finite length, l, which can be excited by axisymmetric
forces or pressures at either end as shown in Figure 1. These forces could be an axial
force, N, on the shell, a radial shear force, Q, a moment about a circumference, M, or
a pressure force, P, acting on the fluid. The shell can respond in the axial or radial
directions with displacements u and w. The fluid can move with an axial displacement
uf .

For the examples chosen here it is assumed that the flexible tube is clamped at
either end to a stiffer pipe flange, thereby constraining the radial motion w and radial
slope, 1v/1x, to zero at these sections. No information will then be required concerning
the associated radial shear force Q and moment M on the boundaries. The problem
then reduces to the determination of the dynamic stiffness matrix in the equation
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Figure 1. A section through a fluid-filled pipe, showing the sign convention.
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T 1

Physical parameters

Rubber tube Braided rubber tube

Pipe radius 25 mm 100 mm
Wall thickness 10 mm 10 mm
Pipe length 0·2 m 1 m
Plate modulus E'x E'u =106 N/m2 5·1×108 N/m2

Poisson ratio nx , nu =0·5 nx , nu =1
Wall density 103 kg/m3 1·07×103 kg/m3

Wall loss factor 0·1 0·1
Fluid loss factor 0·001 0·001
Fluid bulk modulus 2·7×109 N/m2 2·7×109 N/m2

Fluid density 103 kg/m3 103 kg/m3

in which the stresses and displacement are first given as a sum of wavenumber components,
and then in terms of a common variable {w}, the radial displacement. Insertion of the
boundary conditions at x=0, x= l, gives the desired dynamic stiffness matrix and the
impedance matrix (by a division by iv).

2.1.   

The shell and fluid properties may be described by a set of non-dimensional parameters
employed in reference [1]. These described the orthotropic properties of the shell, the
internal pressure and axial tensile force, which are as follows.

Pipe dimensions: a=mean radius, h=wall thickness, l=length.
Material properties: r=shell density, rf =fluid density, E'x =elastic modulus of the

shell in the x-direction, E'u =elastic modulus of the shell in the circumferential direction,
nu , nx =Poisson ratios, Kf =bulk modulus of the fluid, P0 = static internal pressure,
N0 = tensile end force on the pipe.

Variables: f=frequency (Hz), v=2pf (frequency in rad/s), ks =wavenumber of the sth
wave, as = ksa (non-dimensional wavenumber), V=vazr/E'u (non-dimensional fre-
quency).

Non-dimensional parameters: gp =P0a/E'uh (normalized static pressure), gE =E'x /E'u
(elastic modulus ratio), c=V2/gEa

2
f =(r/rf )/(B/(gEEu)) (the fluid wave speed normalized

to the shell axial wave speed; B=E'xh3/12), x=N0/2paE'uh (the normalized tension/unit
circumference), c1 = (nx − gp)(nu − gp/gE) (the lateral softening term due to pressure or
Poisson ratio), b=2Kfa/E'uh (the fluid loading term), r= gEh2/12a2 (normalized bending
stiffness).

T 2

Test parameters

Test Pressure (bar) gp Tension (N) x Figures

1 0 0 0 0 2–5
2 2 0·5 392 0·25 6
3 4 1 784 0·5 7, 8
4 −2 −0·5 −392 −0·25 9–11
5 0 0 0 0 12, 13
6 5·1×106 0·1 1·375×105 0·05 14, 16
7 25·5×106 0·5 8×105 0·25 17, 18
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Figure 2. The non-dimensional wavenumber versus the frequency. Test 1, gr =0, x=0. ---, s=1; ——, s=2;
— —, s=3; · · · · ·, s=4. (a) Real part; (b) imaginary part.

2.2.      

The axial displacement fields u and uf , and the shell radial displacement W, may both
be described as a sum of the four pairs of waves corresponding to the roots, s=1, 2, 3, 4.
The axial motion for the shell, for example, is

u= s
s=1,4

[Ls ]6U+
s

U−
s 7 , (2)

where

[Ls ]=$e−iksx

0
0

eiksx%
and U+

s and U−
s are the amplitudes of the right- and left-travelling waves. The radial shell

displacement and fluid axial displacement are similarly written in terms of W+
s , W−

s and
U+

fs , U−
fs .

If a travelling wave solution, e−iksx, for a right-going wave is applied to the equation of
axial equilibrium in the shell [1], equation (12) is then
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6U+
s

U−
s 7=$Cs

0
0

−Cs%6W+
s

W−
s 7 , (3)

where Cs =ias(nu − gp/gE)/(V2/gE − a2
s ).

The dynamic pressure, p, in the fluid can be described as the sum of the pressures,

p= s
s=1,4

[Ls ]6P+
s

P−
s 7 . (4)

The pressures are related to the fluid axial velocities by

rfüf =−1p/1x. (5)

For each wavenumber, s, the derivative is given as

1

1x 6P+
s

P−
s 7=−

ias

a $10 0
−1%6P+

s

P−
s 7 . (6)

For harmonic excitation, üfs =−v2Ufs eivt, and equation (5) becomes

6P+
s

P−
s 7=$Fs

0
0

−Fs%6U+
fs

U−
fs% , (7)

where Fs =iv2arf/a2
s and P−

s is the negative-going pressure wave.
In reference [1] the relationship between the pressure for the sth wave and the wall

motion is given from radial equilibrium for both positive- and negative-going waves as

Ps =
−2Kf

1− (as/af)2

Ws

a
. (8)

Figure 3. Test 1, gr =0, x=0; structural impedance modulus. ——. Input impedance, Z11; - - - -, transfer
impedance, Z12.
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Figure 4. Test 1, gr =0, x=0; fluid input impedance, Z33. ——, Real part; - - - -, modulus (water
pipe=2×103).

Therefore substitution of equation (7) into equation (8) gives

6U+
fs

U−
fs7=$Ds

0
0

−Ds%6W+
s

W−
s 7 , (9)

where Ds =2ias/(a2
f − a2

s ).
The right- and left-going pressures can now be written by using equations (7) and (9)

as

6P+
s

P−
s 7=FsDs 6W+

s

W−
s 7 . (10)

The axial stress in the shell, sx , may also be described in terms of positive and negative
travelling waves, s+

xs and s−
xs , in the form of equation (2) within the framework of the

Hooke’s law relationship [1]:

sx =E'x[1u/1x+ nuw/a]. (11)

Upon using the differential operation of equation (6) on u, and making substitutions from
equation (3), equation (11) becomes, in terms of the radial displacements,

6s+
xs

s−
xs7=

E'x
a

(−iasCs + nu) 6W+
s

W−
s 7 . (12)

The total axial stress, sx , at any point, x, can be expressed as the sum of four wave types
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by using equation (12) by introducing the x-dependence vector in [Ls ] in equation (2):

sx(x)= s
4

s=1

−E'x
a

(asCs − nu)[1 1][Ls ]6W+
s

W−
s 7 . (13)

Likewise, the pressure at any point is

p(x)= s
4

s=1

FsDs [1 1][Ls ]6W+
s

W−
s 7 . (14)

The axial displacement u(x) in the shell is

u(x)= s
4

s=1

Cs [1 −1][Ls ]6W+
s

W−
s 7 . (15)

and the axial displacement in the fluid is

uf(x)= s
4

s=1

Ds [1 −1][Ls ]6W+
s

W−
s 7 . (16)

The dynamic stiffness expressions require that the stresses and pressures are multiplied by
the respective cross-sectional areas, such that the axial shell force, N(x)=−2pahs(x), and
the pressure force, P(x)= pa2p(x). The matrices describing these forces at any position,
x, are given from equations (13) and (14), so that

6N(x)
P(x)7=[M][L]{W}, (17)

Figure 5. Test 1, gr =0, x=0; transfer impedance moduli. ——, Fluid, Z34; - - - -, structural, Z12.
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Figure 6. The non-dimensional wavenumber versus the frequency; real part. Test 2, gr =0·5, x=0·25. ---,
s=1; ——, s=2; — —, s=3; · · · · ·, s=4.

where

[M]= [M1 M2 M3 M4], Ms =$2phE'x (asCs − nu)
pa2FsDs

2phE'x (asCs − nu)
pa2FsDs % ,

2×8

L1

L2
W+

s

G
G

G

K

k
G
G

G

L

l
g
G

G

F

f
h
G

G

J

j
[L]= L3

, {W}= W−
s , s=1, 4.

L4
···

8×8 8×1

The axial shell displacement and the fluid displacement at any section, x, can be similarly
expressed by using equations (15) and (16):

6u(x)
uf(x)7=[N][L]{W}, (18)

where

[N]= [N1 N2 N3 N4], [Ns ]=$Cs

Ds

−Cs

−Ds% .

2×8

Now that the displacements and the forces have been stated in terms of a common variable
{W}, it is possible to write the dynamic stiffness matrix in the form shown in equation
(1). This simply requires substituting into it the forces and displacements at the boundaries
x=0, x= l:

N1 =N(0), N2 =−N(l), P1 = p(0), P2 =−p(l),

U1 = u(0), U2 = u(l), Uf 1 = uf(0), Uf 2 = uf(l). (19)
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The forces at either end of the tube are given from equations (17) and (19):

N1 [M]

P1
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l

· · · = · · · ·· · · · · · {W}. (20)

N2

P2 −[M][L(l)]

The displacements at either end of the tube are likewise given from equations (18)
and (19):

U1 [N]

Uf1
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Figure 7. The non-dimensional wavenumber versus the frequency. Test 3, gr =1, x=0·5. ---, s=1; ——, s=2;
— —, s=3; · · · ·, s=4. (a) Real part; (b) imaginary part.
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Figure 8. Test 3, gr =1, x=0·5, fluid input impedance, Z33. ---, Modulus; ——, real part.

The dynamic stiffness matrix is formed by eliminating {W} from equations (20) and (21)
by substitution into equation (1):

K11
··· K12

N1 ···
U1

P1 = · · · · · · =
Uf1 , (22)g
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where

K11
··· K12 [M] [N] −1
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· · · · · · = · · · · · · · · · · · · · · · · .
···

K21
··· K22 [M][L(l)] [N][L(l)]

The impedance matrix [Z]= (1/iv)[K].

3. PROCEDURE

A series of computational parameter studies were conducted by using a program, written
in MATLAB, on a water-filled rubber tube to identify the components of the impedance
matrix. The transfer functions were produced for zero pressure, and also for positive and
negative pressurization.

The effect of braided rubber was investigated by varying the shell orthotropic elastic
moduli. Finally, the influence of pressure increase on the braided rubber shell was studied.
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For each parameter set, the approach was to plot out the dispersion curves giving the
wavenumber against frequency for the pipe under test. Dispersion curves against
non-dimensional frequency were discussed in reference [1]. A matrix of wavenumbers
against frequency was stored and applied to equation (22), thus calculating all the terms
in the impedance matrix. Reciprocity checks were made between transfer functions
confirming that Zpq =Zqp , where p and q are force and response co-ordinates.

3.1.     

The physical parameters for the tests on a homogeneous rubber tube and a braided
rubber tube are given in Table 1.

The pressure and axial tension were varied in the tests 1–6 as indicated in Table 2 for
various pressures and tensions on a homogeneous rubber tube, with non-dimensional
parameters gp and x respectively given in section 2.1. The tension N0 was obtained by
closing the tube end and allowing the tube to resist the internal pressure, P. Therefore,
in these tests tension was in a fixed relationship with the pressure, N0 = pa2P, giving
x=2gp .

The significance of the normalized pressure is that values above unity are probably not
obtainable because of catastrophic expansion for positive pressure. For negative pressure,
gp =−1 will, very crudely, give buckling. Buckling is dependent on the wall
thickness-to-radius ratio [3] and for decreasing wall thickness gives buckling 0q gp q−1.

Figure 9. The non-dimensional wavenumber versus the frequency. Test 4, gr =−0·5, x=−0·25. ---, s=1;
——, s=2; — —, s=3; · · · · ·, s=4. (a) Real part; (b) imaginary part.
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Figure 10. Test 4, gr =−0·5, x=−0·25, fluid input impedance, Z33. ---, Modulus; ——, real part.

The preceding theory [1] also permitted calculations to be made on a wire stiffened or
braided tube with anisotropic properties. The most interesting outcome of this analysis was
that the Poisson ratio product, nunx , of the composite tends towards unity as for a thickness
constrained two-dimensional solid, as compared to a maximum of n2 =0·25 for a
homogeneous three-dimensional solid. In physical terms this means that axial and
circumferential strains are strongly coupled in the stiffened material.

A parametric study described by tests 5–7 in Table 2 was conducted, in which the
wavenumbers for various positive pressures and associated axial stresses were plotted from

Figure 11. Test 4, gr =−0·5, x=−0·25. ——, Fluid transfer impedance Z34; - - - -, structural Z12.
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Figure 12. Test 7, gr =0, x=0; non-dimensional wavenumber. ---, s=1; ——, s=2; — —, s=3;
· · · · ·, s=4. (a) Real part; (b) imaginary part.

which structural and fluid impedances were generated. The tube wall was rubber with 1%
volume fraction steel wire inclined at 45° in both directions.

4. RESULTS AND DISCUSSION

4.1.       -  

4.1.1. Zero pressure (gp =0), zero tension (x=0): test 1
The real wavenumbers are seen in Figure 2(a). The s=2 axial structural wavenumber

in the shell increases linearly with frequency. The wave speed, c2, is controlled by the
Young’s modulus of the rubber and the density of rubber (E/r(1− n2))1/2. At 200 Hz the
normalized wavenumber takes a value of unity indicating that this is the ring frequency
for the tube.

The other propagating wave is that associated with the fluid mass and radial
wall motion, denoted s=1. The wavenumbers are about twice those of the
structural wave, s=2, up to the ring frequency. At frequencies below the ring
frequencies, the s=1 wave speed is controlled by the fluid mass and the wall radial
modulus of elasticity, E'u . At higher frequencies the slope of this curve decreases as
frequency to the power one half, indicating that the wall bending stiffness has become the
controlling factor.
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Figure 13. Test 7, gr =0, x=0, gr =0·1, x=0·05, gr =0·5, x=0·25. Structural input impedance, Z11.

The other wavenumbers seen in Figure 2(a) are the real parts of complex waves which
will be seen to be responsible for some local mass effects. The imaginary components of
these waves are seen at the top of Figure 2(b). The attenuating parts of the propagating
waves, s=1, s=2, due to material hysteresis, are in the lower section of Figure 2(b).

Figure 14. Test 7, gr =0, x=0. ——, Fluid input impedance, Z33, - - - -, fluid transfer impedance, Z34.
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Figure 15. Test 8, gr =0·1, x=0·05; non-dimensional wavenumber against non-dimensional frequency. ---,
s=1; —, s=2; — —, s=3; · · · · ·, s=4. (a) Real part; (b) imaginary part.

The impedance modulus, Z11, for the axial structural input is displayed in Figure 3. The
evenly spaced resonance peaks are associated with the structural wave, s=2, discussed
earlier. There is a stiffness characteristic at low frequencies giving a negative unit slope.
The frequency average value, Zs , is frequency independent with the form

Zs = rc2A, (23)

where A is the shell cross-sectional area and r is the wall density. The average value is
about 40 N/ms. The frequency average value, Zp , for a 6 mm wall steel pipe of the same
25 mm radius is 11×103 N/ms. This mismatch in characteristic impedances illustrates that
the flexible tube would be a good reflection of structural waves like those in the steel pipe.

The structural transfer impedance, Z12, describing the blocked force at the far end due
to an input velocity at 1 is similar to the input impedance, Z11, as would be the case for
a longitudinal rod.

In Figure 4 is shown a display of the modulus of the input fluid impedance, Z33, and
the real part alone. The initial resonance at 30 Hz is also visible on the structural transfer
function, Z11, in Figure 3. The subsequent resonance peaks are closely spaced, as they are
associated with the relatively high wavenumber of the fluid wave, s=1. Below the ring
frequency of 200 Hz the real component of impedance is constant, at about 10 N/ms. This
is much less than the fluid impedance of a semi-infinite, hard-walled pipe of the same



105

Frequency (Hz)

Im
pe

da
n

ce
 m

od
u

lu
s 

(N
/m

/s
)

101 102 103

103

104

102

. . 306

radius, which has an input impedance of 2×103 N/ms. The flexible tube therefore has
potential as an impedance mismatch device for fluid waves as well as structural waves.

At frequencies greater than 200 Hz the real part of the impedance increases slightly
because the wall bending stiffness becomes dominant, as illustrated in the dispersion curve
of the s=1 wave.

Slightly detrimental to an impedance mismatch performance is the size of the imaginary
component of the input impedance. This has a constant unit slope dominating the modulus
curve. The ripples from the real part are still visible. The unit slope indicates that there
is an attached mass effect of mass, m, with impedance, ivm. This is probably associated
with the imaginary wave component with a value of 2 running across Figure 2(b).

In Figure 5 is shown the fluid transfer impedance, Z34, taking, as expected, an almost
constant value similar to that of the real part of the fluid input impedance, Z33. The fluid
and structural transfer functions are displayed together giving the relative sizes of
transmitted forces when an equal velocity is imposed both on the fluid and structure at
the free end. It is interesting that both contributions are of the same order of magnitude.

4.1.2. Positive pressure (gp =0·5), positive tension (x=0·25): test 2
This is a substantial pressure, close to the acceptable working limit of such a flexible

tube as gp =1 would probably correspond to bursting pressure. It is very interesting to
see that there is again little discernible change to the dispersion curves in Figure 6, as
compared to the unstressed version in Figure 2(a). The impedances, not shown here, are
also very similar to those of the unstressed cases.

4.1.3. Positive pressure (gp =1), positive tension (x=0·5): test 3
These static loads are probably not practical because it is thought that an instability

could occur in the tube at this pressure causing an unlimited radial expansion.

Figure 16. Test 8, gr =0·1, x=0·05. ——, Fluid input impedance, Z33; ---, fluid transfer impedance, Z34.
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Figure 17. Test 9, gr =0·5, x=0·25; non-dimensional wavenumber against non-dimensional frequency. ---,
s=1; ——, s=2; — —, s=3; · · · · ·, s=4. (a) Real part; (b) imaginary part.

The dispersion curves seen in Figure 7 have simplified. The s=2 curve associated with
the axial structural wave is unchanged. The s=1 dispersion curve becomes horizontal at
low frequencies with a value approaching unity.

The structural input impedance, Z11, is unchanged from Figure 3, reflecting only axial
wave motion. The fluid input impedance, Z33, in Figure 8 is unchanged at high frequencies
but softens considerably at low frequencies towards a minimum of 5 Hz, below which the
behaviour is stiffness controlled. A zero at 0 Hz would imply instability because there is
no stiffness. Therefore, in this case instability has not quite occurred, but is close.

4.1.4. Negative pressurization (gp =−0·5) and compressive axial force (x=−0·25): test 4
The dispersion curves for negative pressurization are given in Figures 9(a) and 9(b).
The s=2 axial wave in the shell is not influenced by the negative pressure, the ring

frequency is at 200 Hz as before, and the input structural impedance, Z11, is unchanged
from other cases.

Below the ring frequency the fluid wave s=1 has slowed. There is also at the top of
Figure 9(a) another curious wave type, s=4, which has a bending wave characteristic at
high frequencies. The significance of these modified waves is seen in the fluid input
impedance, Z33; see Figure 10. A couple of observations can be made using a comparison
with the unpressurized example in Figure 4. The first resonance frequency has dropped
slightly because of the increase in the fluid wavenumber, s=1. The most noticeable effect,
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however, is a dramatic increase in damping. The damping for the s=1 wave becomes
very large, seen by comparing the imaginary component with the real component.
Equal magnitudes at about 100 Hz indicate a loss factor of unity. The fluid transfer
impedance, Z34, in Figure 11 is very interesting. There is a region of high attenuation
between 30 Hz and 300 Hz compared with the unpressurized case. This is because
the s=1 fluid wave is not really propagating, but is rapidly attenuated by the
high damping. The two resonances in this frequency range are associated with the
axial structural wave, s=2, visible in Figure 3. At frequencies above 300 Hz, the
bending wave, s=4, assumes significance and the transfer characteristic begins to
rise.

These characteristics indicate that a negatively pressurized flexible tube could be a useful
fluid pressure attenuation device if it could be correctly configured.

4.1.5. Summary for the rubber pressurized flexible tube
For positive pressurization, a rubber flexible tube appears to be a good impedance

mismatch for both fluid and structural waves. Axial tension causes increased stiffness, but
this is countered by the decreased stiffness from the internal pressure causing an increased
radius. The upper pressure will be limited to the case when gp =1 and instability will occur
and the flexible tube in this linear model would expand uncontrollably.

Negative pressurization causes a softening in the fluid component of the impedance and
a potential for high attenuation of fluid waves. The input impedance is, unfortunately,
limited by an attached mass caused by flexural waves in the pipe wall. This limitation is
not too serious, however, as the input impedance is always at least 0·1 of an equivalent
fluid-filled, hard-walled tube.

Figure 18. Test 9, gr =0·5, x=0·25. ——, Fluid input impedance, Z33; ---, fluid transfer impedance, Z34.
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4.2.     -,    

4.2.1. Zero pressure (gp =0), zero tension (x=0)
The dispersion curves for the braided rubber hose described in section 3 are shown in

Figure 12. There are two propagating waves types, identified as those curves which have
a real part much larger than the associated imaginary part.

The s=2 axial structural wave is as before with the unstiffened rubber. It is a
non-dispersive wave with a wavenumber of unit slope. The ring frequency occurs when
the non-dimensional wavenumber is unity, as with all other cases.

The other propagating wave, denoted s=1, is no longer a Korteweg type wave relying
upon the wall elasticity, but rather a fluid-loaded, axisymmetric bending wave, of the sort
seen before, only above the ring frequency. It is known to be bending in origin because
of the slope of (frequency)1/2. This is the effect of braiding, which with water-filled tubes
discourages radial expansion of the tube. Bending, the dominant motion, requires less
stretching. The other two waves are complex and less significant.

The input structural impedance, Z11, is displayed in Figure 13. It is, as expected, that
of an equivalent rod in axial vibration. The frequency average impedance for this tube is
6×103 N/ms. The frequency average impedance for an equivalent steel tube of 6 mm wall
thickness is 144×103 N/ms. This particular flexible tube would be quite effective at zero
pressure as it offers a good impedance mismatch.

The input fluid impedance is shown in Figure 14. The increase of the average with
frequency is consistent with behaviour dominated by axisymmetric bending waves. The
impedance of an equivalent semi-infinite, fluid-filled, hard-walled tube is 4·7×104 N/ms.
Below about 300 Hz such a braided tube would give good attenuation because the
impedance is at least one tenth that of the fluid. However, by 1000 Hz the flexible tube
would not be very effective.

The fluid transfer characteristics in Figure 14 are fairly similar to the input
characteristics discussed above, apart from the attenuation between input and output at
high frequencies due to the damping.

4.2.2. Positive pressure (gp =0·1), positive tension (x=0·05)
The real wavenumbers for this case are in Figure 15 when the internal pressures and

tensions are applied. The s=2 axial structural wave and the associated input structural
impedance seen in Figure 13 are unaffected, as with all previous examples.

The reason that the axial structural wave never changes is that the water within the tube
prevents radial wall motion for this wave type. The wave is therefore not affected by
out-of-plane bending forces or membrane forces. It should be noted that for test purposes,
pipe flexibles are often pressurized with air rather than water which would permit radial
wall motion and so appear to be softer. Such tests would give an exaggerated view of the
flexible’s isolating potential. When pressurization is applied, or as frequencies increase, the
radial wall motions become restricted and the tube stiffens.

The s=1 wavenumber, the upper curve in Figure 15, is one-third of the unpressurized
low frequency value, indicating considerable stiffening. The slope changes to become
proportional to frequency suggesting that pressure related membrane forces control the
response rather than the bending waves of the unpressurized case.

These observations are borne out by the forms of the input and transfer fluid impedances
given in Figure 16. The average values have risen at lower frequency by a factor of ten,
causing a deterioration of the impedance mismatch performance.

These results are very interesting, because they suggest that the stiffening observed under
pressurization could be indeed due to the braiding. The braiding has a high Poisson ratio,
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of order unity, describing a strong interdependence between radial and axial motion. The
restraint of radial expansion causes axial tensile forces which in turn stiffen the tube.
Unbraided rubber does not exhibit this phenomenon to the same extent because the
Poisson ratio is of the order of 0·5, describing a reduced radial to axial coupling.

4.2.3. Positive pressure gp =0·5, x=0·25
Further increase of the pressure causes no change to the structural input impedance, Z11

(see Figure 17), but results in further stiffening to the fluid waves as expected (see Figure
18). Comments are the same as for the previous example.

5. CONCLUSIONS

Some theory and computer modelling was completed to generate the impedance matrix
of a pressurized elastic tube. It was found that for positive pressurization a rubber tube
did not stiffen much with increasing frequency and, in principle, could be used as an
effective impedance mismatch device for both fluid and structural vibration in pipes.

A model was developed for the elastic properties of a wire stiffened rubber tube. It was
found that a Poisson ratio approaching unity could be obtained. This means that lateral
and axial motion of the tube are highly coupled. For the wire stiffened tube it was found
that the stiffness was increased significantly by internal pressure. This is because the tension
in the wires now controls the tube dynamic behaviour. Stiffness is therefore proportional
to tension or internal pressure.

If axial vibration tests are conducted on an air-filled tube, an unrepresentatively low
stiffness will be recorded in comparison to that for a liquid within as the liquid restrains
the radial motion.

The fluid and structural impedance matrix for a negatively pressurized rubber tube was
generated. The tube softened under pressure, causing attenuation to travelling waves in
the fluid. The input characteristics did not change greatly with pressure because there is
an attached mass effect associated with non-propagating bending waves in the shell. In
practice, negatively pressurized rubber tube was more likely to have bending instability
problems.
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